Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 438: 137977, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37976874

ABSTRACT

Films based on poly(vinyl alcohol) (PVA) and cationic starch (CS) were combined with different percentages of sorbitol (S; 15.0, 22.5, and 30.0% w v-1) to assess the effect of plasticizer on the films. Spectroscopic analyses confirmed the interaction between them. However, micrographs indicated the formation of sorbitol crystals on the surface of the films, especially at higher sorbitol concentrations. The blends presented low water vapor transmission rate values, reaching (7.703 ± 0.000) g h-1 m-2 (PVA75CS25S15), and low solubility values for the films containing higher CS amounts. The lack of statistical differences in most parameters suggests that no significant gain comes from increasing the amount of sorbitol at percentages higher than 15%. As a coating, the blend PVA75CS25S15 successfully decreased the loss of moisture content in acerolas by 1.15 times (compared to the control), confirming the suitability of this matrix as a fruit coating.


Subject(s)
Polyvinyl Alcohol , Starch , Starch/chemistry , Polyvinyl Alcohol/chemistry , Plasticizers/chemistry , Spectrum Analysis , Ethanol , Sorbitol
2.
Int J Biol Macromol ; 152: 272-279, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32105683

ABSTRACT

Guava is a perishable fruit susceptible to post-harvest losses. So, the development of biodegradable films based on acetylated cassava starch (ACS) and hydroxyethyl cellulose (HEC) could be an alternative to increase guavas (Psidium guajava L.) shelf life. Films were characterized by solubility, opacity, water vapor transport, and thickness. Mass loss, texture, titratable acidity, soluble solids, vitamin C, and skin color of the fruits were analyzed. The films with higher HEC concentration were more transparent and hygroscopic. Guava coated with 75% HEC and 25% ACS or 100% HEC films increased firmness, maintained green skin color and reduced ripeness, lasting for 13 days, ensuring that the ACS and HEC based films can increase guavas shelf life, besides decrease environmental impacts of non-biodegradable packages.


Subject(s)
Biodegradable Plastics/chemistry , Cellulose/chemistry , Psidium/chemistry , Starch/chemistry , Ascorbic Acid/chemistry , Cellulose/analogs & derivatives , Food Preservation/methods , Fruit/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...